All finite configurations are Almost Ramsey
نویسندگان
چکیده
منابع مشابه
Making All Cardinals Almost Ramsey ∗ † ‡ Arthur
We examine combinatorial aspects and consistency strength properties of almost Ramsey cardinals. Without the Axiom of Choice, successor cardinals may be almost Ramsey. From fairly mild supercompactness assumptions, we construct a model of ZF + ¬ACω in which every infinite cardinal is almost Ramsey. Core model arguments show that strong assumptions are necessary. Without successors of singular c...
متن کاملAll Triangles Are Ramsey
Given a triangle ABC and an integer r, r > 2, it is shown that for n sufficiently large and an arbitrary r-coloring of Rn one can find a monochromatic copy of ABC.
متن کاملFinite groups all of whose proper centralizers are cyclic
A finite group $G$ is called a $CC$-group ($Gin CC$) if the centralizer of each noncentral element of $G$ is cyclic. In this article we determine all finite $CC$-groups.
متن کاملAll uncountable cardinals in the Gitik model are almost Ramsey and carry Rowbottom filters
Using the analysis developed in our earlier paper [ADK], we show that every uncountable cardinal in Gitik’s model of [Git80] in which all uncountable cardinals are singular is almost Ramsey and is also a Rowbottom cardinal carrying a Rowbottom filter. We assume that the model of [Git80] is constructed from a proper class of strongly compact cardinals, each of which is a limit of measurable card...
متن کاملAlmost All Palindromes Are Composite
We study the distribution of palindromic numbers (with respect to a fixed base g ≥ 2) over certain congruence classes, and we derive a nontrivial upper bound for the number of prime palindromes n ≤ x as x → ∞. Our results show that almost all palindromes in a given base are composite. ∗MSC Numbers: 11A63, 11L07, 11N69 †Corresponding author 1
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 1979
ISSN: 0097-3165
DOI: 10.1016/0097-3165(79)90036-0